

Fundamentals of Sound Source Localization University of Pretoria – August 2018

Restricted © Siemens AG 2018

Realize innovation.

Fundamentals of Sound Source Localization Agenda

- Introduction to Sound Source Localization
- Beamforming-based localization methods
- Far-field Deconvolution methods
- Map averaging methods

Restricted © Siemens AG 2018

Introduction to sound source localization

Overview of current techniques

Simple

Stethoscope

Limited hardware

- No reportable data
- Sound pressure only
- Stationary sources only

- ISO sound power & partial sound power
- Time-consuming
- Limited frequency range
- Stationary sources only

- □ Fast results
- Limited hardware
- Directivity & sound power estimation
- Stationary sources only

Sound Camera

Advanced

- Real-time results
- Stationary and transient sources
- Requires more advanced knowledge to operate

Introduction to sound source localization Why don't we just measure sound pressure?

Sound pressure waves are deformed during physical propagation towards the array (interference effects, reflections, absorption, etc.)

Raw measured pressure maps do not show correct localization of sound sources

Need for specialized back-propagation techniques

Wide variety of techniques available today: Beamforming, Holography, Deconvolution, etc.

No fit-for-all solution, every technique has its own boundary conditions, strengths and weaknesses

Microphone arrays are an expert tool

Restricted © Siemens AG 2018

Beamforming A new method?

Fundamentals of Sound Source Localization Agenda

- Introduction to Sound Source Localization
- Beamforming-based localization methods
- Far-field Deconvolution methods
- Map averaging methods

Restricted © Siemens AG 2018

SIEMENS Ingenuity for life

- Assume source emits planar pressure waves
- Assumption requires far-field measurement conditions
 → Distance to source ≥ array diameter D
- Microphone array consists of many microphones which record the sound pressure signal simultaneously
- Spatial distribution of sources causes a small time delay between the measured signals

Beamforming core principle: Sound source origin can be extracted from time delay (or phase delay) information between microphones

Restricted © Siemens AG 2018

Page 8

SIEMENS

Ingenuity for life

Reverse time delay for true source directions results in in-phase summation of microphone signals

Summation amplitude ~ localization probability

- Sum microphone signals
- Beamforming is a 'delay-and-sum' method:

 $\tau =$

Apply reverse time delay for each potential source

 $\frac{d \cdot cos(\theta)}{d \cdot cos(\theta)}$

- Distance between microphones d Direction of the source vs. the microphone array θ Speed of sound in ambient conditions c
- Time delay **T** between microphone signals depends on:

Beamforming Time-domain example

SIEMENS

Ingenuity for life

Beamforming What influences localization quality?

- Delay-and-sum processing has a sensitivity pattern around the main 'beam' direction which causes distortion
- Factors influencing the sensitivity pattern:
 - Localization technique
 - Analysis frequency
 - Array design

Beamforming Spatial resolution

 Beamforming identifies a source region with a size depending on the spatial resolution:

Spatial resolution
$$\approx \frac{d}{D}\lambda$$

- d = array distance to source
- D = array diameter
- λ = analysis wavelength

```
Restricted © Siemens AG 2018
```

Spatial resolution determines localization accuracy

Beamforming Spatial resolution – Practical implications

- Sufficient spatial resolution required for:
 - Precise localization of sound source origin
 - Separation of closely spaced sound sources
- Beamforming is very potent for high frequency sound source localization, but suffers in the low frequency range
 where the wavelengths are large

- Spatial resolution can be improved by:
 - Increasing the array diameter,
 - Moving closer to the source
 - Analyzing higher frequency contributions
- Other localization methods can improve the spatial resolution in certain conditions: Focalization, iNAH, Deconvolution, Bayesian Focusing, etc.

Page 12

Beamforming Dynamic range

- Side lobes caused by redundancy in phase information between microphone pairs → microphone layout
- Phantom lobes caused by spatial undersampling of high frequency wavelengths → microphone density
- Dynamic range = zone between main lobe and highest side lobe which is guaranteed distortion-free

Dynamic range determines localization confidence

Restricted © Siemens AG 2018

Page 13

Beamforming Dynamic range – Practical implications

- Dynamic range applies relative to dominant source level
- Important aspect for sound source localization for engineering purposes:
 - Confidence in sources found within dynamic range
 - Ability to localize secondary (non-dominant) sources

- Dominant factor in determining dynamic range is the array design:
 - Microphone layout
 - Array size
- Dynamic range is a quality indicator of a given array

Beamforming Influence of array design parameters

 $|D(f,\phi)|$

Increase frequency:

- Main lobe width smaller
- Phantom lobes appear at very high frequencies

Increase #mics N:

- Side lobe levels reduce
- Array size equal, so spacing d decreases

Increase array size:

60

40

20

d = 0.1 m

d = 0.15 m d = 0.2 m

- Main beam width reduces
- #mics *N* equal, so spacing *d* increases

80

100

 ϕ (degrees)

120

140

160

Focalization A variant to Beamforming

- Planar pressure wave assumption not valid in near-field
- When distance to source < array diameter D, pressure waves are better approximated as **spherical** waves
- Time delay between microphones can be expressed as:

$$\tau = \frac{r_2 - r_1}{c} = \frac{d \cdot \cos(\theta) \cdot (\cos\left(\frac{\varphi}{2}\right) + \sin(\frac{\varphi}{2}) \cdot \tan(90 - \frac{\varphi}{2}))}{c}$$

 At large source distances (r₁ → ∞) angle φ becomes small (φ → 0) and Focalization becomes more similar to classical Beamforming:

$$\frac{\sin\left(\frac{\varphi}{2}\right) \cdot \tan\left(90 - \frac{\varphi}{2}\right) \to 0}{\cos\left(\frac{\varphi}{2}\right) \to 1} \quad \tau \to \frac{d \cdot \cos(\theta)}{c}$$

Practical benefit: Spatial resolution improves by factor ~2

Siemens PLM Software

Beamforming & Focalization Summary

Beamforming spatial resolution $\approx \lambda$ (ideal)

Focalization spatial resolution $\approx \frac{1}{2} \lambda$ (ideal)

- Many factors have been seen to influence real-world localization performance
- Best results obtained at high analysis frequencies and short measurement distances

Restricted © Siemens AG 2018

Restricted © Siemens AG 2018

Beamforming & Focalization Synergy

Focalization @ 7 cm						
400 Hz	1000 Hz	2000 Hz	4000 Hz			
		0	Ó			

Best results obtained with combination of **Beamforming and Focalization**

Beamforming & Focalization Synergy – Practical example

Where does wind noise leak into this vehicle?

2. Focalization

- Near-field technique
- High resolution
- Precise localization

Beamforming & Focalization Measurement distance vs. calculation distance

Far-field: time delay dominated by distance between microphones \rightarrow minor influence by incorrect distance

86

85

84

83

82

81

80

Grid step: 0.014 / 0.014 - Grid size: 55 / 31 - distance :0.300 - [2828 - 3563 Hz]

Grid step: 0.029 / 0.029 - Grid size: 55 / 31 - distance :0.600 - [2828 - 3563 Hz]

Grid step: 0.048 / 0.048 - Grid size: 55 / 31 - distance :1.000 - [2828 - 3563 Hz]

Near-field: spherical waves sensitive to propagation distance \rightarrow major influence by incorrect distance

Grid step: 0.005 / 0.005 - Grid size: 55 / 31 - distance :0.100 - [2828 - 3563 Hz] Restricted © Siemens AG 2018

Grid step: 0.014 / 0.014 - Grid size: 55 / 31 - distance :0.300 - [2828 - 3563 Hz]

Grid step: 0.048 / 0.048 - Grid size: 55 / 31 - distance :1.000 - [2828 - 3563 Hz]

Fundamentals of Sound Source Localization Agenda

- Introduction to Sound Source Localization
- Beamforming-based localization methods
- Far-field Deconvolution methods
- Map averaging methods

Restricted © Siemens AG 2018 Page 21

Far-field Deconvolution What is it?

What?	Why?		
 Iterative & quantitative source localization method Increases spatial resolution vs. Beamforming-based methods by factor ~4 to 5, and enables objective source ranking via Sound Power estimations 	 Beamforming underperforms in cases with multiple sources in close proximity at large distances Alternative methods not always applicable in those scenario's (e.g. near-field Holography) 		
How?	When?		
 Assume discrete monopole source distribution with uncorrelated spherical sound radiation Optimal monopole distribution to match measured Beamforming result found via iterative optimization 	 Far-field, distance to source > array diameter Localization only: low to mid frequency range Quantification: low to high frequency range Uncorrelated sources only (e.g. aero-acoustics) 		

Far-field Deconvolution How does it work?

- Find the monopole distribution for which the predicted Beamforming result matches the measured result
- Mathematically expressed as the minimization of the following cost function (CIRA method):

$$\min_{\sigma,\sigma_i\geq 0} C(\sigma) = \sum_i \left(\sum_j (H_{ij}\cdot\sigma_j) - B_i\right)^2$$

- σ = distribution of monopole sources $\sigma_{1...I}$
- *H_{ij}* = transformation matrix from monopole @ point j to Beamforming result @ point i
- B_i = measured Beamforming result @ point i

Monopole source model dramatically improves spatial resolution and allows Sound Power estimation!

SIEMENS

Far-field Deconvolution CIRA – Practical examples

Far-field Deconvolution CIRA – Practical examples

- Aero-acoustic sources in wind tunnel @ 4.45 meters
- Beamforming provides high-confidence but low-accuracy initial guess on source positions

- Confirms Beamforming result and improves spatial resolution
- Sources quantified → allows objective comparison

Far-field Deconvolution CIRA vs. Clean-SC

Select peak

Iterative Least-squares

- All monopoles are processed in the same loop
- Finds optimal monopole distribution through iterative optimization of cost function (previous slides)
- **CIRA** in Testlab: improved convergence criteria

Iterative Cleaning

- Each monopole is processed in a separate loop
- Finds optimal monopole position for dominant source in current loop, then removes coherent components
- **Clean-SC** in Testlab: based on spatial coherence

Beamforming map Repeat for next dominant peak **Clean-SC result**

Clean-SC procedure

Far-field Deconvolution CIRA vs. Clean-SC – Practical example

Beamforming

8. dBA (W/m*2)

110.0

109.0

108.0

107.0

106.0

105.0

104.0

103.0

102.0

dBA (W/m^2) 8.

113.0

112.0

111.0

110.0

109.0

108.0

107.0

105.0 105.0

8. dBA (W/m*2)

115.0

114.0

113.0

112.0

111.0

110.0

109.0

108.0 107.0

900 – 1120 Hz

1420 – 1780 Hz

d -0.40

Far-field Deconvolution CIRA vs. Clean-SC – Summary

CIRA	Clean-SC		
 Advantages vs. Beamforming Improves dynamic range Improves spatial resolution (reconstruction with monopoles) Improves source separation capability Quantitative results in Sound Power 	 Advantages vs. Beamforming Strongly improves dynamic range Improves the spatial resolution (reconstruction with monopoles) Quantitative results in Sound Power Very fast calculation time for Deconvolution method 		
 Disadvantages Only valid for uncorrelated sources, sensitive to correlation between sources Calculation time of multi-variable optimization 	 Disadvantages Only valid for uncorrelated sources, very sensitive to correlation between sources Does not improve source separation capability 		

Fundamentals of Sound Source Localization Agenda

- Introduction to Sound Source Localization
- Beamforming-based localization methods
- Far-field Deconvolution methods
- Map averaging methods

Restricted © Siemens AG 2018 Page 29

Map averaging methods How do we handle time-domain averaging?

- One time block per microphone is sufficient to calculate one hologram result
- Different strategies exist for combining holograms from multiple time blocks, depending on the source type:
 - Stationary vs. transient
 - Correlated vs. uncorrelated

Map averaging methods Spectrum averaging

Process **Spectrum averaging** Calculate averaged spectrum over all time blocks 3 Calculate hologram from averaged spectrum 2) Usage Extremely fast calculation time \rightarrow animations! Requires phase reference signal Requires stationary and correlated sources to avoid information loss during averaging

Restricted © Siemens AG 2018 Page 31

Map averaging methods Principal Components Averaging

Process Principal Components Averaging Time blocks Cross-spectrum Calculate cross-spectrum matrix between time blocks FFT matrix Apply PCA to CSM \rightarrow identifies independent sources FFT Calculate spatially averaged hologram over all principal components Usage Cross-spectrum matrix Does not eliminate uncorrelated sources and does not **PCA** require phase reference signal \rightarrow general purpose Only suitable for stationary sources Principal components

3)

Siemens PLM Software

Map averaging methods Hologram averaging

Process

- 1) Calculate one spectrum per time block
- 2) Calculate one hologram per spectrum
- Calculate spatially averaged hologram over all time blocks

Usage

- Averaging process does not completely eliminate transient components
- Does not require phase reference signal
- High computational effort

Hologram averaging

Ingenuity for life **Process** CSM DR averaging Cross-Spectrum Matrix formulation of classical Remove diagonal components from CSM in the Beamforming with N microphones at point k: classical Beamforming expression $B_{k}(f) = w_{k}'(f)CSM(f)w_{k}(f), CSM(f) = [p_{i}(f) p_{j}^{*}(f)]_{M \times M}$ Apply Hologram averaging to the result Observation: microphone autopowers on diagonal are very sensitive to **self-noise** \rightarrow dynamic range reduction Usage Removal of diagonal components improves quality of Beamforming result by reducing overall noise: Removal of microphone **self-noise** (e.g. wind noise, **CSM DR** PCA sensor noise, etc.) Extends Hologram averaging, significantly improves dynamic range (especially aero-acoustic sources)

Map averaging methods Cross-Spectrum Matrix Diagonal Removed averaging

SIEMENS

Map averaging methods Summary

	Spectrum	PCA	Hologram	CSM
Correlated sources	\odot	\odot		
Uncorrelated sources	8			
Non-stationary sources	:			
Calculation time	\odot			C

www.siemens.plm/simcenter

Restricted © Siemens AG 2018

Realize innovation.

Fast new processing kernel in HDCAM

Up to 10x faster results for all methods

Supports all methods: beamforming, focalization, iNAH, deconvolution

Benchmark shows improvement by factor 7-10 for all methods

Fast processing using state of the art GPU and multi-core computing.

Supports NVidia cards with CUDA GPUs: (GeForce 9xx, Quadro Mxxx).

HDCAM enables faster repetitive measurements without having to wait for preprocessing for analysis

Improves time-to-nextmeasurement to 5-10s.

Repetitive sequential measurements do not require preprocessing for analysis after each recording

HDCAM enables faster repetitive measurements without having to wait for preprocessing for analysis

Improves time-to-nextmeasurement to 5-10s.

Repetitive sequential measurements do not require preprocessing for analysis after each recording

Page 39